Robostar Robot Controller Manual

로보스타 로봇 N1 시리즈 <mark>옵션</mark> CC_Link

- CC_Link

Robostar Robot Controller Manual

ROBOSTAR ROBOT N1 Series Option CC-Link

- CC_Link

Copyright © ROBOSTAR Co,. Ltd 2012

이 사용 설명서의 저작권은 주식회사 로보스타에 있습니다. 어떠한 부분도 로보스타의 허락 없이 다른 형식이나 수단으로 사용할 수 없습니다.

사양은 예고 없이 변경 될 수 있습니다.

제품 보증에 관하여

(㈜) 로보스타의 제품은 엄격한 품질 관리로 제조되고 있으며, 로보스타의 전 제품의 보증 기간은 제조일로부터 1년간입니다. 이 기간 내에 로보스타 측의 과실로 인한 기계의 고장 또는 정상적인 사용 중의 설계 및 제조상의 문제로 발생되는 고장에 한해서만, 무상으로 서비스를 합니다.

다음과 같은 경우에는 무상 서비스가 불가능합니다.

- (1) 보증 기간이 만료된 이후
- (2) 귀사 또는 제 3 자의 지시에 따른 부적당한 수리, 개조, 이동, 기타 취급 부주의로 인한 고장
- (3) 부품 및 그리스 등 당사의 지정 품 이외의 것의 사용으로 인한 고장
- (4) 화재, 재해, 지진, 풍수해 기타 천재지변에 의한 사고로 발생되는 고장
- (5) 분료 및 침수 등 당사의 제품 사양 외의 환경에서 사용함으로 인한 고장
- (6) 소모 부품의 소모로 인한 고장
- (7) 사용설명서 및 취급 설명서에 기재된 보수 점검 작업 내용대로 실시하지 않음으로 인해 발생되는 고장
- (8) 로봇 수리에 드는 비용 이외의 손해

㈜ 로보스타 주소 및 연락처

- 본사 및 공장 경기도 안산시 상록구 수인로 700 700, Suin-ro, Sangnok-gu, Ansan-City, Gyeonggi-do, Republic of South Korea (426-220)
- 제 2공장 경기도 수원시 권선구 산업로 108 108, Saneop-ro, Gwonseon-gu, Suwon-City, Gyeonggi-do, Republic of South Korea (441-813)
- 서비스요청 및 제품문의 - 영업문의 TEL. 031-400-3600 FAX. 031-419-4249 - 고객문의 TEL. 1588-4428

www.robostar.co.kr

사용 설명서의 구성

본 제품에 관한 사용 설명서는 다음과 같이 구성되어 있습니다. 본 제품을 처음 사용하는 경우 모든 설명서를 충분히 숙지하신 후 사용하시기 바랍니다.

■ CC_Nink

CC_LINK통신 모듈을 사용하여 N1 시리즈에 제어기의 접속 방법 및 사용법에 대하여 설명합니다.

ii

목차

제1장	개 요	1-1
1.1	CC-LINK OPTION CARD란	1-1
1.2	시스템의 구성	1-2
제2장	기 능	2-1
2.1	전체 CC-Link 버전과 기능	2-1
2.	1.1 마스터 국, 로컬 국	2-1
2.	1.2 리모트 디바이스 국	2-1
2.2	각국 유형간의 교신	2-2
2.3	통신 사양	2-3
2.4	최대 전송거리	2-4
제3장	규격	3-1
3.1	CC-LINK OPTION CARD 규격	3-1
3.2	LED 기능 정의	3-2
3.3	STATION NUMBER 설정	3-2
3.4	BAUD RATE 설정	3-3
3.5	CONNECTOR PIN 결선	3-3
제4장	설치 및 동작 설정	4-1
4.1	HARDWARE 설치 방법	4-1
4.2	CC-LINK 네트워크 케이블 연결 방법	4-2
4.3	CONTROLLER 설정	4-3
4.3	3.1 FIELD BUS(CC_LINK) 설정	4-3
4.3	3.2 USER I/O 설정	4-5
4.4	PLC 데이터 전송 속도	4-6
제5장	CC-LINK 설정 예	5-1
5.1	CC_LINK 네트워크 매개 변수 설정	5-1
5.2	CC-LINK 마스터국 매개 변수 설정	5-2
5.3	CC-LINK 슬레이브국 네트워크 매개 변수 설정	5-2
5.4	변환된 CC-LINK 네트워크 매개 변수 적용	5-3
제6장	MEMORY MAPPING	6-1
6.1	N1 Controller Data Mapping	6-1

6.1	. 1	N1 Series System Input #1	6-2
6.1	.2	N1 Series System Input #2 & FIELDBUS INPUT#1	6-3
6.1	.3	N1 Series FIELDBUS INPUT #2	6-3
6.1	.4	N1 Series System Output #1	6-3
6.1	.5	N1 Series FIELDBUS Output #2	6-4
6.2	N1	Series System Mode 사용 시 주의사항	6-4
6.3	N1	시리즈 FIELDBUS(CC_LINK)타이밍도	6-5
6.3	R. 1	AUTO RUN MODE에서의 운전	6-5
6.3	3.2	JOB 운전 중 JOB Program 변경	6-7
6.3	<i>3.3</i>	JOB Program 완료 후 JOB Program 변경	6-9
6.3	8.4	알람 해제 후 JOB Program START	6-11
6.3	8. <i>5</i>	알람 해제 후 JOB Program Restart	6-13
6.3	8.6	SERVO OFF	6-15
6.3	8. <i>7</i>	Rebooting	6-17
6.3	8.8	MODE(AUTO, STEP, JOG) 변경	6-19
6.3	8.9	STEP MODE	6-21
6.3	R. 10	JOG MODE에서의 운전	6-23
6.3	R. 11	JOG MODE에서의 포워드 운전	6-25
6.3	R. 12	RPM, TRQ 읽기	6-27
6.3	R. 13	Current Position 읽기	6-28
6.3	8.14	GLOBAL Point 읽기	6-29
6.3	R. 15	GLOBAL Point 쓰기	6-31
6.3	R. 16	GLOBAL Integer 읽기	6-33
6.3	R. 17	GLOBAL Integer 쓰기	6-34
6.3	R. 18	GLOBAL Float 읽기	6-35
6.3	3.19	GLOBAL Float 쓰기	6-36
제7장	부	록	7-1
7 1	ይ ቡ	I 저리	7-1

제1장 개 요

1.1 CC-Link Option Card란

CC-Link Option Board는 ㈜로보스타의 N1 시리즈 컨트롤러의 CC-Link (Control & Communication Link) 필드 네트워크 시스템의 통신을 담당하는 보드입니다. CC-Link Option Board를 이용하여 N1 시리즈 컨트롤러는 PC 또는 PLC와 같은 시스템과 CC-Link 필드 네트워크에 의해 CC-Link 프로토콜을 이용한 통신을 수행할 수 있습니다. CC-Link Option Board는 전기적 매체로 RS485 규격에 준거하는 인터페이스를 가지며 CC-Link 프로토콜을 이용하는 CC-Link 필드 네트워크에 접속되어 마스터인 어떤 기기와도 통신이 가능합니다. 그림 1-1은 FA 네트워크 구성 내에서 필드 네트워크에 상당하다는 것을 보여주고 있습니다.

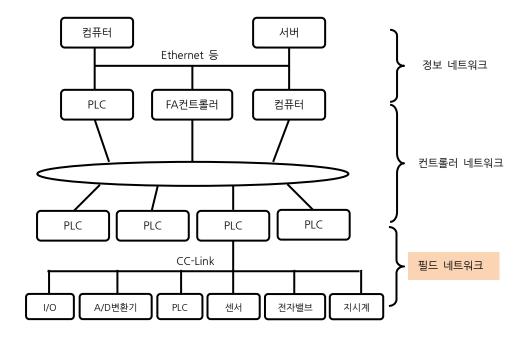


그림 1.1 FA 네트워크의 범위

1.2 시스템의 구성

상위 네트워크는 CC-Link 마스터 국인 PC또는 PLC와 같은 장비와 인터페이스가 되며, 마스터 국은 CC-Link 필드 네트워크를 이용하여 하위 슬레이브국들과 통신을 하게 됩니다.

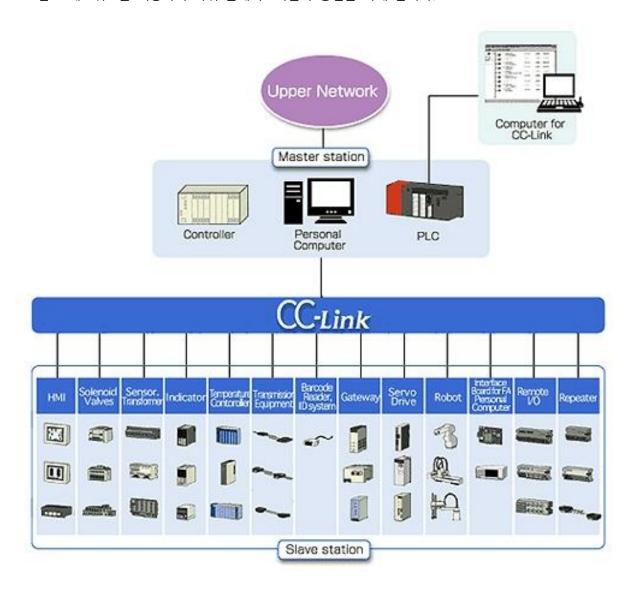


그림 1.2 CC-Link 시스템 구성도

CC-Link Option Board는 CC-Link Ver.1.10에 해당되며 리모트 디바이스 국의 기능을 수행합니다. 리모트 디바이스국은 사이클릭 전송과 국간 케이블 길이 완화 기능을 갖습니다.'

제2장기 능

2.1 전체 CC-Link 버전과 기능

2.1.1 마스터 국, 로컬 국

각 CC-Link 버전에 있어서 마스터 국, 로컬 국의 기능일람을 표2.1에 나타냅니다. Ver.2.00 마스터 국 및 로컬국은, 종래 버전과의 호환성을 유지하기 위해 사이클릭 전송과 확장 사이클릭 전송의 쌍방이 필수 기능입니다.

기능	Ver.1.10	Ver.2.00	
사이클릭 전송	0	0	
확장 사이클릭 전송	ı	0	
트랜젠트 전송	Δ	Δ	
메시지 전송기능	-	Δ	
국간 케이블 길이 완화	0	0	

○ : 필수기능, △ : 선택기능, - : 기능 없음

표 2.1 마스터 국, 로컬 국에 있어서 기능 일람

2.1.2 리모트 디바이스 국

각 CC-Link 버전에 있어서 리모트 디바이스 국의 기능 일람을 표2.2에 나타냅니다. Ver.2.00 리모트 디바이스국은 확장 사이클릭 전송이 필수 기능입니다.

기능	Ver.1.10	Ver.2.00	
사이클릭 전송	0	Δ	
확장 사이클릭 전송	+	0	
트랜젠트 전송	ı	_	
메시지 전송기능	_	Δ	
국간 케이블 길이 완화	0	0	

<u>○</u> : 필수기능, △ : 선택기능, - : 기능 없음

표 2.2 리모트 디바이스 국에 있어서 기능 일람

2-1

2.2 각국 유형간의 교신

CC-Link Ver. 1, Ver. 2 의 각국 유형간에 있어서 교신의 가부(可否)를 표 2.3 에 나타냅니다.

수신 국			(Ver.2 국) (Ver.1					/er.1 =	국)		
송신	! 국		М	L	ID	RD	М	L	ID	RD	RIO
	마스터 국	М		0	0	0		0	0	0	0
() () () () () () () () () ()	로컬 국	L	0	0		_	0	0	1	_	_
(Ver.2 국)	인텔리전트 디바이스 국	ID	0	0		_	X	X	1	_	_
	리모트 디바이스 국	RD	0	0	_	_	X	Х	_	_	_
	마스터 국	М		0	X	Х		0	0	0	0
	로컬 국	L	0	0	1	_	0	0	1	_	_
(Ver.1 국)	인텔리전트 디바이스 국	ID	0	0	=	_	0	0	_	_	-
	리모트 디바이스 국	RD	0	0	_	=	0	0	_	_	_
	리모트 I/O국	RIO	0	0	_	_	0	0	-	_	_

 \odot : 확장 사이클릭 전송으로 교신가능

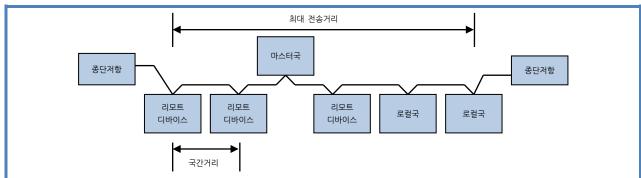
○ : 사이클릭 전송으로 교신가능

x : 교신 불가 - : 기능 없음

표 2.3 각국 유형간의 교신

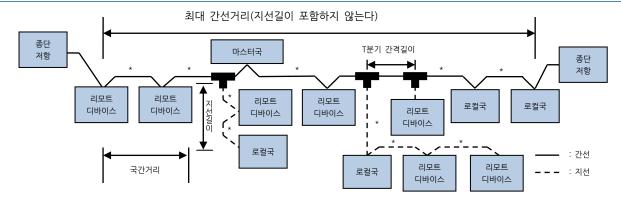
2.3 통신 사양

2.3 중인 지	사양		
	10M/5M/2.5M/625k/156kbps		
통신방식	브로드캐스트 폴링방식		
동기방식	프레임 동기방식		
부호화 방식	NRZI (Non-Return to Zero, Inverted)		
전송로 형식	버스(bus) 형식(EIA RS485 준거)		
건송포맷	HDLC (High-level Data Link Control) 준거		
오류 제어방식	CRC16 $(X^{16} + X^{12} + X^5 + 1)$		
최대 링크 점수	RX,RY :2048 점 RWw :256 점(마스터 국->슬레이브국) RWr: 256 점(슬레이브국->마스터 국)		
1 국당 링크 점수	RX,RY :32 점(로컬국은 30 점) RWw :4 점(마스터 국->슬레이브국) RWr: 4 점(슬레이브국->마스터 국)		
최대 점유 국수	4 국		
트랜젠트 전송 [1 링크 스캔당]	최대 960 바이트/국 [150 바이트(마스터 국-〉인텔리전트 디바이스 국, 로컬 국), 34 바이트(인텔리전트 디바이스 국, 로컬 국-〉마스터 국)]		
접속대수	(1 x a)+(2 x b)+(3 x c)+(4 x d) ≤ 64 국 a: 1 국 점유국 대수, b: 1 국 점유국 대수, c: 1 국 점유국 대수, d: 1 국 점유국 대수 16 x A + 54 x B + 88 x C ≤ 2304 A: 리모트 I/O국 대수		
슬레이브국 국번	1~64		
RAS 기능	자동복렬 기능 슬레이브국 절리 기능 데이터 링크 상태 확인 오프라인 테스트 (하드웨어테스트, 회선 테스트) 대기 마스터 국		
접속 케이블	CC-Link 전용 케이블 (실드부착 3심 트위스트 페어케이블)		
공단저항 (DA-DB 간에 접속) 간선 양단			


표2.4 통신사양

2-3

* 위의 사양 중 통신속도 및 접속 대수는 반드시 기재내용 전부를 가질 필요는 없습니다.



2.4 최대 전송거리

CC_Link 전용 케이블(110Ω유형)

통신속도	156Kbps	625Kbps	2.5Mbps	5Mbps	10Mbps			
국간케이블 길이	20cm 이상							
최대 전송거리	1200m	900m	400m	160m	100m			

T분기접속

1 (-1	· ፫/18¬						
	통신속도	156kbps 625kbps		10M/5M/2,5Mbps 는 불가			
국 간	마스터 로컬국, 인텔리젠	1m 이상 2m 이상 30cm 이상		리모트 I/O, 리모트 디바이스국만 시스템 구성의 경우			
케이	트 디바이스국 전후국간 *1			로컬국, 인텔리전트 디바이스국을 포함한 시스템 구성의 경우			
블 길 이	리모트 I/O국 및 리모트 디바이스국의 국간(가장 짧은 케이블)*2						
지	선 최대 접속대수(1 분기당)	6	5	총 접속 대수는 표 2.6 통신사양 참조			
	최대 간선길이 500m 100m		100m	종단저항간의 케이블 길이(지선길이는 포함하지 않는다)			
T분기 간격		제한 없음					
최대 지선길이		8m		1 분기당 케이블 길이			
	총 지선길이	200m	50m	지선길이의 합계			

표2.5 최대 전송거리

제3장 규격

3.1 CC-Link Option Card 규격

CC-Link Option Board의 전면 외형도는 그림 3.1과 같습니다.

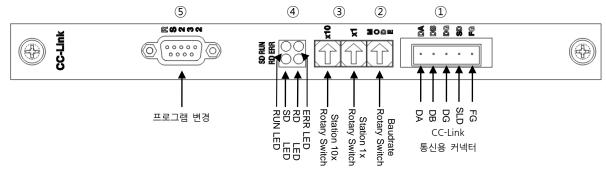


그림 3.1 CC-Link Option Card 전면 외형도

CC-Link Option Board의 규격은 표 3.1과 같습니다.

기 능	설 명			
상태 표시	- Status LED			
설정 스위치	Baud rate SwitchStation Number Switch			
통신 포트	- RS485 준거 CC-Link 프로토콜 Interface			
사용 전압	 Internal +5V ± 5% : 0.5 A nominal Maximum External +24V ± 5% : 0.15 A nominal Maximum 			
사용 온도	- 온도: operating 0 ~ 40 °C storage -15 ~ 60 °C			
사용 습도	- 습도 : 20 ~ 80% RH (non-condensing)			

표 3.1 CC-Link Option Board 규격

3.2 **LED 기능 정의**

CC-Link Option Board에는 모두 4개의 LED가 있어 CC-Link Adapter 상태를 외부에서 간단히 알 수 있습니다. 외형은 그림 3.1의 ④번과 같으며, 기능은 다음과 같습니다.

	LED Color	기 능
RUN	YELLOW	CC-Link 필드 네트워크와 정상적인 통신을 할 때 켜짐
ERR	RED	CC-Link 필드 네트워크와 비정상적인 통신을 할 때 켜짐
SD	GREEN	데이터를 송신 시 ON 상태를 유지합니다.
RD	GREEN	데이터를 수신 시 ON 상태를 유지합니다.

표 3.2 LED 기능 정의

Cyclic 통신을 하는 정상적인 상태에서는 ERR LED를 제외한 모든 LED는 ON 상태로 동작합니다..

3.3 Station Number 설정

그림 3.1의 ③번의 Station 10x Rotary Switch와 Station 1x Rotary Switch를 이용하여 CC-Link Master와 통신을 하기 위해 Master에서 설정된 Station Number로 변경 합니다.

Rotary Switch는 10진수를 이용하므로 10x Rotary Switch로 10의 자리를 1x Rotary Switch로 1의 자리를 설정할 수 있습니다.

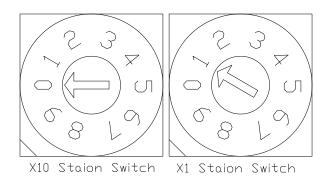


그림 3.2 Station Number 설정 예

Station Number 설정은 총 0~63국까지 설정할 수 있으며, CC-Link Option Board가 속하는 리모트 디바이스 Station Number는 1~63 Station Number까지 설정할 수 있습니다. 그림 3.2는 1 Station Number 로 설정한 예입니다.

3.4 Baud rate 설정

그림 3.1의 ②번의 Baud rate Rotary Switch를 이용하여 CC-Link Master와의 통신속도를 설정 합니다. Rotary Switch는 10진수를 사용하며, 각 숫자에 해당하는 통신속도는 표 3.3과 같습니다.

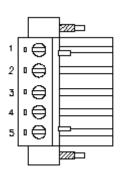

Baud rate 설정 값					
값	통신속도				
0	156 Kbps				
1	625 Kbps				
2	2.5 Mbps				
3	5 Mbps				
4	10 Mbps				
상기 이외의 값	Error				

표 3.3 Baud rate 설정 값

3.5 Connector Pin 결선

- CC-Link Connector

STL(Z) 950 5 핀 OPEN Connector 입니다. 외형은 그림 3.1 의 ①와 같으며 케이블은 CC-Link 에서 정의하는 CC-Link Ver.1.10 이면 가능합니다. 색상은 DA(청색), DB(백색), DG(황색)으로 정의되며 SLD와 FG는 색상정의가 없습니다. SLD는 케이블의 Shield를 FG는 Frame Ground를 의미합니다. 자세한 사항은 "4.2 CC_LINK 네트워크 케이블 연결방법"을 참조 하십시오.

CN PIN	신호명	설명
1	DA	Data A
2	DB	Data B
3	DG	Data Ground
4 SLD		Shield
5 FG		Frame Ground

그림 3.3 CC-Link Connector 핀 번호

제4장 설치 및 동작 설정

4.1 Hardware 설치 방법

다음과 같은 과정을 수행하여 N1 시리즈 컨트롤러의 CC_LINK Option Board를 사용할 수 있습니다.

- 1) 전원을 OFF 합니다.
- 2) N1 Controller 의 PCI 슬롯부분에 CC_Link Board 를 부착 합니다

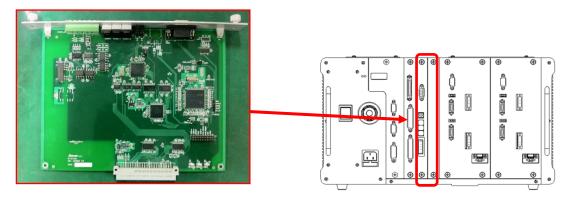


그림 4.1 Option Board 설치 방법

3) 전원을 ON 합니다.

4.2 CC-Link 네트워크 케이블 연결 방법

Cable과 Connector 연결 방법은 CC-Link Option Card에서 STL(Z) 950 5핀 OPEN Connector를 사용하므로, CC-Link 필드 네트워크의 DA(청), DB(백), DG(황), SLD 네 선을 사용하여 스크류 드라이버로 고정합니다. 기본적으로 CC-Link 인증 케이블을 사용합니다. 케이블과 Connector의 결선은 다음과 같이 결선합니다.

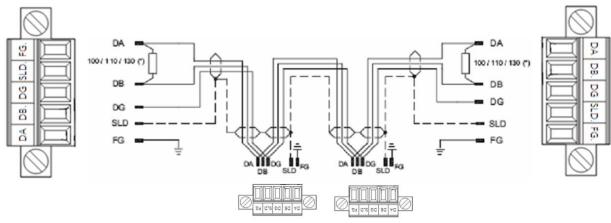
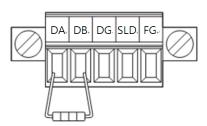
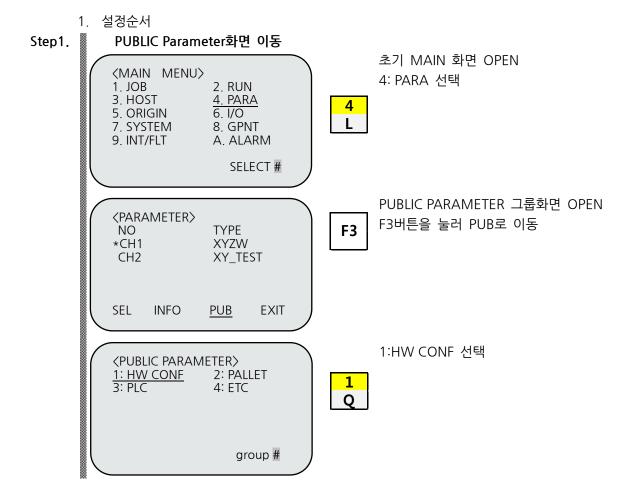


그림 4.2 케이블 결선 방법

종단 저항은 Connector DA-DB 사이에 연결합니다. 연결 예시로 그림 4.3과 같이 연결 하시면 됩니다.

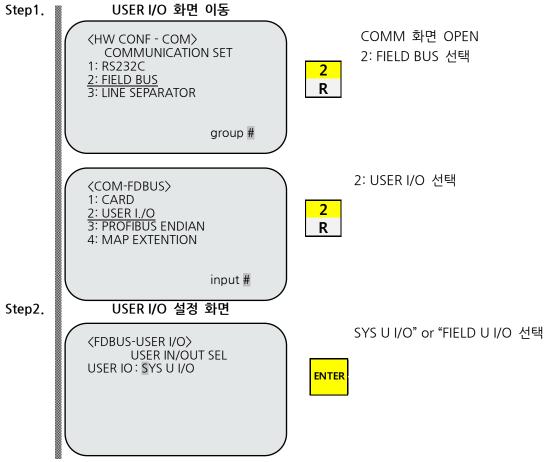



그림 4.3 종단저항 연결 방법


4.3 Controller 설정

N1 시리즈 컨트롤러에서 CC-Link를 사용하기 위해서는 Controller FIELD BUS 설정을 CC-Link Mode로 설정해야 합니다.

4.3.1 FIELD BUS(CC_LINK) 설정


CAUTION

CC-Link B/D가 없을 경우 T/P 화면 하단에 "Not Card!"라는 메시지가 나타나고 저장되지 않습니다.

4.3.2 USER I/O 설정

1. 설정순서

Field Bus 카드 사용시 USER I/O 사용 방식을 설정 합니다.

항 목	내 용	
SYS USER I/O	N1 System IO B/D 의 USER I/O 을 이용하여 입·출력	
FIELDBUS USER I/O	Field Bus 카드의 USER I/O 을 이용하여 입·출력	

CAUTION

- ▶ SYS USER I/O 설정시 통신으로 Data(USER I/O 영역) 입·출력이 제한 됩니다.
- ▶ FIELDBUS USER I/O 설정시 I/O Board를 통한 Data(User I/O) 입·출력이 제한 됩니다.
- ▶ User I/O에 대한 자세한 사항은 "취급 설명서 3.3.6"를 참조하시기 바랍니다.

4.4 PLC 데이터 전송 속도

PLC에서 데이터 전송시 최대 10ms 시간 지연이 발생할 수 있습니다. 컨트롤러의 데이터 스캔시간이 20ms이므로 20ms 이하의 시간 동안 데이터 값이 변경되면 정확한 동작을 보장할 수 없습니다.

제5장 CC-Link 설정 예

CC-Link Option Card의 프로그램 매개 변수 설정에 사용한 프로그램은 MISUBITH사의 GX Developer이 며 PLC는 같은 회사의 Q Series를 사용 하였습니다.

5.1 CC_link 네트워크 매개 변수 설정

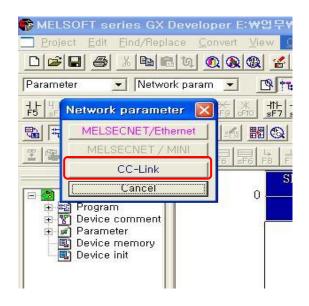


그림 5.1 GX Developer에서의 CC-Link 네트워크 매개 변수 설정 방법

GX Developer에서 CC-Link 네트워크 매개 변수를 설정하려면 그림 5.1에서의 설정과 같이 Parameter → Network parameter → CC-Link 순으로 클릭하여 그림 5.2와 같은 CC-Link 네트워크 매개 변수 설정 창을 엽니다.

CAUTION

A 시리즈는 설정방법이 다를수 있습니다.

5.2 **CC-Link 마스터국 매개 변수 설정**

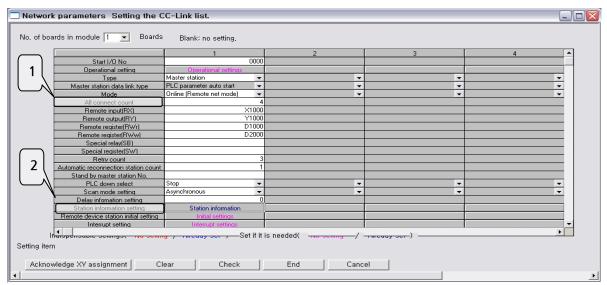


그림 5.2 CC-Link 마스터국 네트워크 매개 변수 설정

- 1) All connect count: 하나의 마스터국에 붙는 전체 슬레이브국의 개수를 나타내며, 그림 5.2에서는 4개의 슬레이브국을 사용하는 설정을 나타내고 있습니다.
- 2) Station information setting: 슬레이브국의 네트워크 매개 변수를 설정 합니다.
- 3) 예제 PLC Program 네트워크 Parameter 설정 값 리모트 입력(RX)의 리플래시 디바이스를 X1000으로 설정 합니다. 리모트 출력(RY)의 리플래시 디바이스를 Y1000으로 설정 합니다. 리모트 레지스터(RWr)의 리플래시 디바이스를 D1000으로 설정 합니다. 리모트 레지스터(RWw)의 리플래시 디바이스를 D2000으로 설정 합니다.

5.3 CC-Link 슬레이브국 네트워크 매개 변수 설정

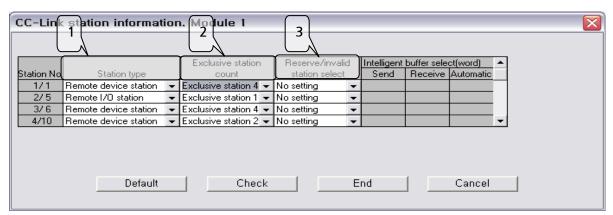


그림 5.3 슬레이브국 상태 정보 설정 창

- 1) Station type: 국의 상태를 설정하며, 설정 내용으로는 Remote I/O station, Remote device station Intelligent device station이 있으며, 로보스타 CC_Link Board는 Remote device만을 지원합니다.
- 2) Exclusive station count : 각 슬레이브국의 사용 국수를 선택하며. <u>로보스타 CC_Link는 4국을 지원합</u> <u>니다</u>.
 - ※ CC_Link 점유국 설정시 3국 이하로 설정하면 오동작에 원이이 될수있습니다. <u>반드시 로보스타</u> CC_Link 점유국은 4국으로 설정하시기 바랍니다.
- 3) Reserve/Invalid station select : 유효 또는 무효 국으로 선택 합니다.

5.4 변환된 CC-Link 네트워크 매개 변수 적용

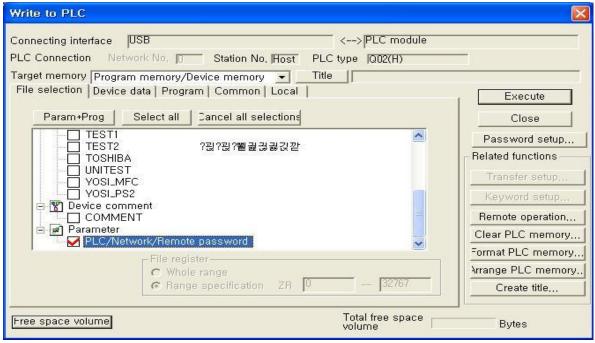


그림 5.4 PLC에 네트워크 매개 변수 다운로드 방법

설정한 CC-Link 네트워크 매개 변수를 PLC에 적용 하고자 한다면 다음과 같은 절차를 실행해야 합니다.

- 1) 컴퓨터와 PLC를 연결합니다.
- 2) 메뉴상의 Online → Write to PLC 를 클릭하여 그림 5.4와 같은 창을 open 합니다..
- 3) 그림 5.4 하단에 위치한 Parameter 하위 메뉴인 PLC/Network/Remote password 선택 후 Execute 버튼을 클릭 합니다.

CAUTION

▶ PLC Program 작성시 "제6장 Memory Mapping"의 "Field Bus 타이밍도"를 참고 하시기 바랍니다.

5-3

제6장 Memory Mapping

6.1 N1 Controller Data Mapping

Controller Data Mapping				
CC-Link Data	Description	CC-Link Data	Description	
RY00-0F	System Input #1	RX00-0F	System Output #1	
RY10-1F	User Input	RX10-1F	User Output	
RY20-2F	Option Input 0	RX20-2F	Option Output 0	
RY30-37	System Input #2	RX30-3F	Error Code Read	
RY38-3F	FieldBus Input #1	1003031	Error Code Read	
RY40-4F	Option Input 1	RX40-4F	Option Output 1	
RY50-5F	Option Input 2	RX50-5F	Option Output 2	
RY60-6F	Option Input 3	RX60-6F	Option Output 3	
RY70-7F	FieldBus Input #2	RX70-7F	FieldBus Output #2	
RWw0	1축 위치 값 입력	RWr0	1축 현재 위치 값 출력	
RWw1	그국 귀시 값 합의	RWr1	그국 언제 귀시 쉾 풀먹	
RWw2	ɔㅊ 이키 가 이려	RWr2	2축 현재 위치 값 출력	
RWw3	2축 위치 값 입력	RWr3	- 2숙 연세 귀시 값 출박 	
RWw4	3축 위치 값 입력	RWr4	3축 현재 위치 값 출력	
RWw5	그국 귀시 값 합력	RWr5	그국 연세 귀시 없 물약	
RWw6	4축 위치 값 입력	RWr6	4축 현재 위치 값 출력	
RWw7	4 독 귀시 없 합력	RWr7	4푹 연세 귀시 없 물릭	
RWw8	Global Integer Input	RWr8	Global Integer Output	
RWw9	Global Integer Index	RWr9	Clobal Float Outsut	
RWw10	JOG VEL Rate Input	RWr10	Global Float Output	
RWw11	Global Point Index	RWr11	Info Data 1 Output	
RWw12	Pull Up Value Input	RWr12	Info Data 2 Output	
RWw13	Global Float Input	RWr13	Info Data 3 Output	
RWw14	Global Float Iliput	RWr14	Info Data 4 Output	
RWw15	Global Float Index	RWr15	Program Num Output	

주) Option I/O 사용시 Parameter I/O EXT B/D 값을 2로 변경하십시오. (조작 운영설명서"1.3.1.3 확장 I/O 보드 설정" 참조하시기 바랍니다.)

주) RWw10의 JOG Velocity Rate Input은 JOG Mode 시 적용되며 설정 범위는1~100%까지 입니다. 설정된 값은 각 축 별로 JOINT MOTION 파라메터의 Jv값을 기준으로 퍼센트로 환산됩니다

6.1.1 N1 Series System Input #1

N1 시리즈에는 Robot Channel 1, 2간 공통으로 사용되는 System Bit가 있으며 이 공통 Bit들은 CH_SEL Bit 설정에 따라 채널간 다르게 동작합니다.

CH_SEL Bit 설정 값이 Low 이면 Robot Channel 1번에 해당하며, High이면 Robot Channel 2번에 해당됩니다.

System Input #1			
0	CH SEL	8	MODE 1 / AXIS 1
1	PROG 0	9	MODE SEL
2	PROG 1	А	JOG VEL
3	PROG 2	В	VEL+ / MOV+
4	PROG 3	C	VEL- / MOV-
5	PROG 4	D	REBOOT
6	PROG SEL	E	ORG #1
7	MODE 0 / AXIS 0	F	START #1

공통으로 사용되는 Bit에는 PROG_0 ~ PROG_4, PROG_SEL, MODEO/AXISO, MODE1/AXIS1, MODE SEL,

JOG VEL, VEL+/MOV+, VEL-/MOV- 등이 있습니다.

공통 Bit사용시 CH SEL Bit 설정 값을 확인하시기 바랍니다.

CH SEL Bit 설정 값이 올바르지 않을 경우 원하지 않는 로봇 Channel이 동작할 수 있습니다.

본 매뉴얼에 표기된 FieldBus 타이밍도는 Channel 1번에 대한 예제들이며, Channel 2번에 대한 조작운영은 Channel 1번 타이밍도에서 CH_SEL Bit 설정 값을 High 상태로 변경하시기 바랍니다.

Global Integer 와 Global Float Data에 대한 읽고, 쓰기는 CH_SEL Bit 설정에 관계 없이 사용하실 수 있습니다.

CAUTION

▶ 각 Bit별 기능에 대한 설명은 취급설명서 "3.3.4 시스템 입·출력 기능에 대하여" 참조하시기 바랍니다.

6.1.2 N1 Series System Input #2 & FIELDBUS INPUT#1

System Input #2		FieldBus Input #1	
0	STOP #1	8	DATA TYPE: XY좌표
1	Reserved	9	DATA TYPE: Angle 좌표
2	SERVO ON #1	А	Data Type: Pulse (Read Only)
3	ORG #2	В	Mode Select (/Current OR GPNT)
4	START #2	C	Write Enable Flag(Position,GINT)
5	STOP #2	D	READ Enable Flag(Position, GINT)
6	Reserved	E	Reserved
7	SERVO ON #2	F	Reserved

6.1.3 N1 Series FIELDBUS INPUT #2

FieldBus Input #2			
0	JOG A(X)+	8	AUTO RUN MODE
1	JOG A(X)-	9	STEP RUN MODE
2	JOG B(Y)+	А	JOG MODE
3	JOG B(Y)-	В	JOG Forward SEL
4	JOG Z+	C	Reserved
5	JOG Z-	D	Reserved
6	JOG W+	E	Info Data Mode SEL #0
7	JOG W-	F	Info Data Mode SEL #1

6.1.4 N1 Series System Output #1

System Output #1			
0	CH SEL	8	ORG OK #2
1	ALL ALARM	9	RUNNING #2
2	READY #1	А	INPOS/INRNG #2
3	ORG OK #1	В	SERVO ON #2
4	RUNNING #1	C	Reserved
5	INPOS/INRNG #1	D	Reserved
6	SERVO ON #1	Е	Reserved
7	READY #2	F	Reserved

6.1.5 N1 Series FIELDBUS Output #2

FieldBus Output #2			
0	Write Complete Flag	8	Auto Run Mode DIS
1	Read Complete Flag	9	Step Run Mode DIS
2	Reserved	А	JOG Mode DIS
3	Forward Moving State DIS	В	Reserved
4	Reserved	C	TRQ Info Data Mode
5	Brake State DIS	D	RPM Info Data Mode
6	Reserved	E	Reserved
7	Reserved	F	Reserved

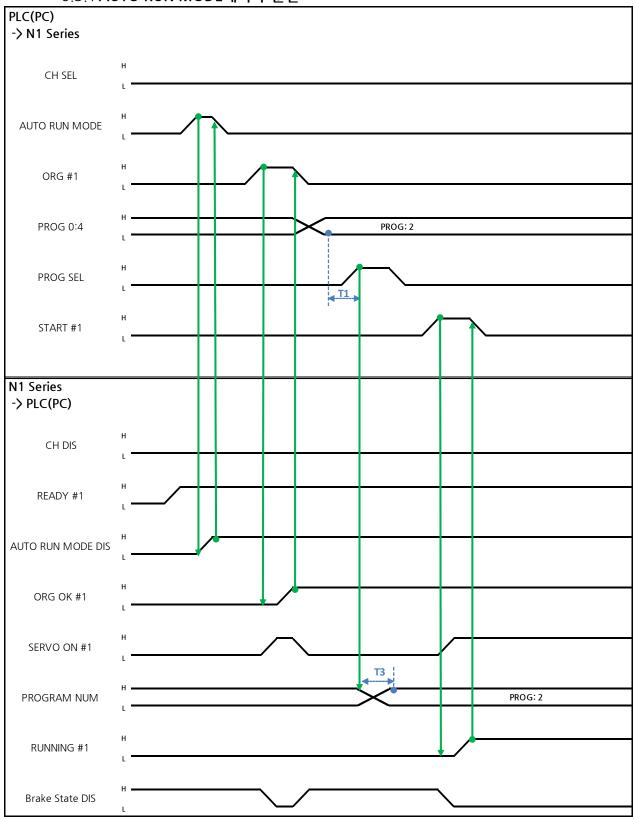
6.2 N1 Series System Mode 사용 시 주의사항

1. 〈Auto Mode 사용 시 주의 사항〉

- ① GINT, GFLOAT 및 GPNT는 Read / Write Enable Flag를 공통으로 사용하기 때문에 변경을 원치 않는 시점에는 사용하지 않은 변수의 Index 값을 할당 합니다.
- ② 좌표 Write 기능은 Data Type중 XYZW, ABZW만 됩니다.
- ③ PROGRAM NUM 출력은 SYSTEM MODE에서 입력된 PROGRAM NUM만 출력 됩니다.
- ④ VEL 출력은 JOG MODE 및 AUTO MODE에서 로봇의 동작 속도를 출력 가능합니다.

2. 〈JOG Mode 사용 시 주의 사항〉

- ① JOG_VEL 입력은 JOG MODE에서만 사용 가능하며, 값이 0인 경우 1% 속도로 동작 합니다.
- ② VEL 출력은 JOG MODE 및 AUTO MODE에서 로봇의 동작 속도를 출력 가능 합니다.
- ③ Field Bus Input #2의 AUTO RUN MODE, STEP RUN MODE, JOG MODE 입력은 펄스 입력해야 합니다.(각 모드가 High로 설정되어 있으면, FieldBus Input #2의 Jog 축 선택 Bit가 비정상적으로 운전 됩니다.)


CAUTION

- ▶ Field Bus 타이밍도에 표시되어 있는 시간은 다음과 같습니다. T1: 20ms, T2: 30ms, T3: 40ms
- ▶ Field Bus 운용시 입력되는 Pulse 폭은 최소 20ms이상 유지해야 합니다.
- ▶ Field Bus 운용시 입력되는 Signal간의 시간간격은 최소 20ms이상이어야 합니다.

6.3 N1 시리즈 FieldBus(CC_Link)타이밍도

6.3.1 AUTO RUN MODE에서의 운전

Auto Servo ON 인 경우

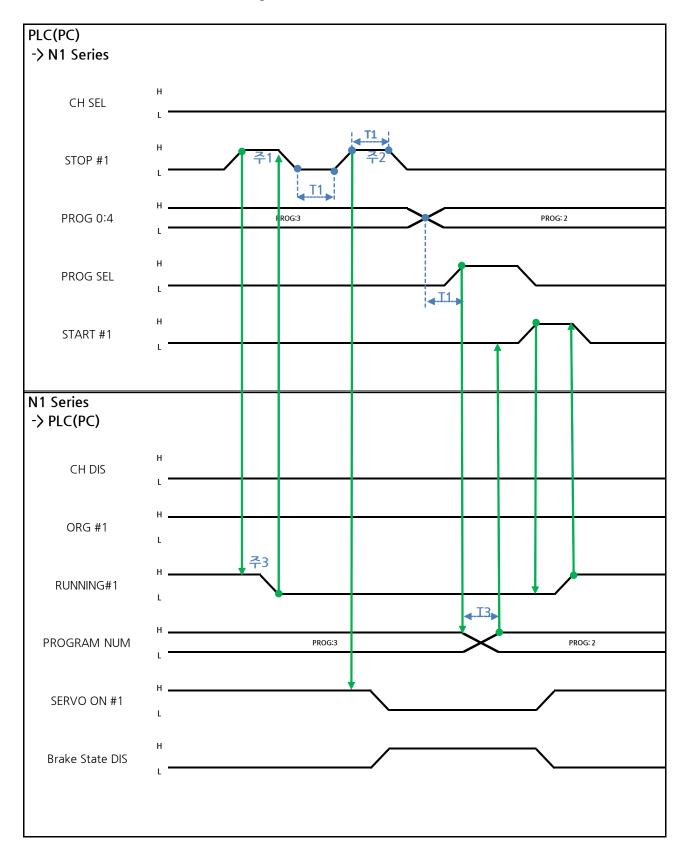
설명 :

- CH SEL Bit를 설정 합니다.(Low: Channel 1번, High: Channel 2번)
- AUTO RUN MODE Bit를 Pulse 형태로 입력합니다.(High 상태를 20ms 이상 유지하여야 합니다.)
- N1 Series에서 ORG OK#1 Signal이 Low이면 ORG #1 Bit를 High로 설정 합니다.
- ORG OK #1이 High로 변경되면 PROG 0~4 Bit를 조합하여 원하는 JOB Program num를 설정합니다.(PROG0 Bit가 최하위(LSB) Bit이며 PROG4 Bit가 최상위(MSB) Bit 입니다.)
- JOB Program num 설정이 완료되면 PROG SEL Bit를 High로 설정 합니다.
- N1 Controller에서 출력하는 PROGRAM NUM 확인 후 START #1 Bit를 High로 설정 합니다.

Auto Servo ON이 아닐 경우

설명 :

- CH SEL Bit를 설정 합니다.(Low: Channel 1번, High: Channel 2번)
- AUTO RUN MODE Bit를 Pulse 형태로 설정 합니다.(High 상태를 20ms 이상 유지하여야 합니다.)
- N1 Series에서 ORG OK#1 Signal이 High가 아니면 ORG #1 Bit를 High로 설정 합니다.
- ORG OK #1이 High로 변경되면 PROG 0~4 Bit를 조합하여 원하는 JOB Program num를 설정합니다.(PROG0 Bit가 최하위(LSB) Bit이며 PROG4 Bit가 최상위(MSB) Bit 입니다.)
- JOB Program num 설정이 완료되면 PROG SEL Bit를 High로 설정 합니다.
- SERVO ON#1 Bit를 Pulse형태로 입력 합니다. N1 Series의 System Output #1의 SERVO ON#1
 을 확인하여 SERVO ON이 되었는지을 확인합니다. (High 상태를 20ms 이상 유지하여야 합니다.)
- N1 Controller에서 출력하는 PROGRAM NUM 확인 후 START #1 Bit를 High로 설정 합니다.


CAUTION

- ▶ N1 Series의 Parameter에서 AUTO SERVO ON 설정을 확인합니다.(조작운영설명서 "1.3.1.5 Auto Servo On" 참조하시기 바랍니다.)
- ▶ Auto Servo ON 설정이 안되어 있을 경우 START #1 Signal 출력 전에 SERVO ON #1 Bit를 High로 출력 합니다.

6-6

6.3.2 JOB 운전 중 JOB Program 변경

Auto Servo ON 인 경우

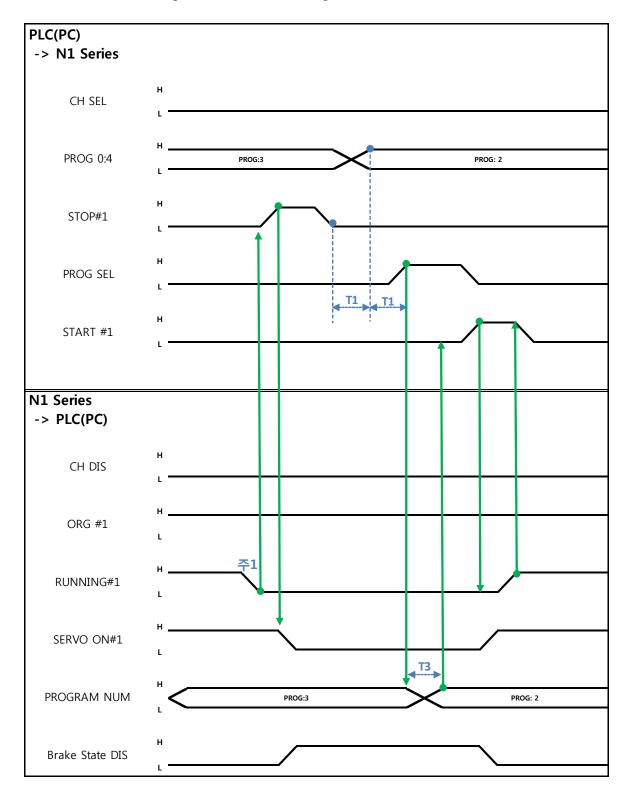
설명 :

- STOP #1 Signal를 Pulse로 입력 합니다. (High 상태를 20ms 이상 유지 해야 합니다.)
- PROG 0~4 Bit를 조합하여 원하는 JOB Program num를 입력합니다.(PROGO Bit가 최하위(LSB)
 Bit이며 PROG4 Bit가 최상위(MSB) Bit 입니다.)
- JOB Program num 설정이 완료되면 PROG SEL Bit를 High로 설정 합니다.
- N1 Controller에서 출력하는 PROGRAM NUM 확인 후 START #1을 High로 설정 합니다.
- 주1) JOB Program 운전 중 JOB Program 운전을 정지하기 위한 Signal 입니다.
- 주2) SERVO OFF 상태 전환 및 JOB Program 초기화 Signal 입니다.
- 주3) Robot Moving 속도에 따라 Low로 변경되는 시간이 다를수 있습니다. (최대 지연시간은 Joint/Linear Motion Parameter에 설정된 At시간 만큼 지연됩니다.)

Auto Servo ON이 아닐 경우

설명 :

- STOP #1 Signal를 Pulse로 입력 합니다. (High 상태를 20ms 이상 유지 해야 합니다.)
- 두 번째 STOP #1 Signal 입력 되신 SERVO ON #1 Signal를 Pulse로 입력 합니다. (High 상태를 20ms 이상 유지 해야 합니다.)
- PROG 0~4 Bit를 조합하여 원하는 JOB Program num를 입력합니다.(PROGO Bit가 최하위(LSB)
 Bit이며 PROG4 Bit가 최상위(MSB) Bit 입니다.)
- JOB Program num 설정이 완료되면 PROG SEL Bit를 High로 설정 합니다.
- N1 Controller에서 출력하는 PROGRAM NUM 확인 후 SERVO ON #1 Signal를 Pulse로 입력합니다.(High 상태를 20ms 이상 유지 해야 합니다.)
- START #1을 High로 설정 합니다.



CAUTION

▶ JOB Program 변경은 Servo OFF 상태에서만 변경 가능합니다. JOB Program을 변경하기전 Servo OFF 상태를 확인 하시기 바랍니다.

6.3.3 JOB Program 완료 후 JOB Program 변경

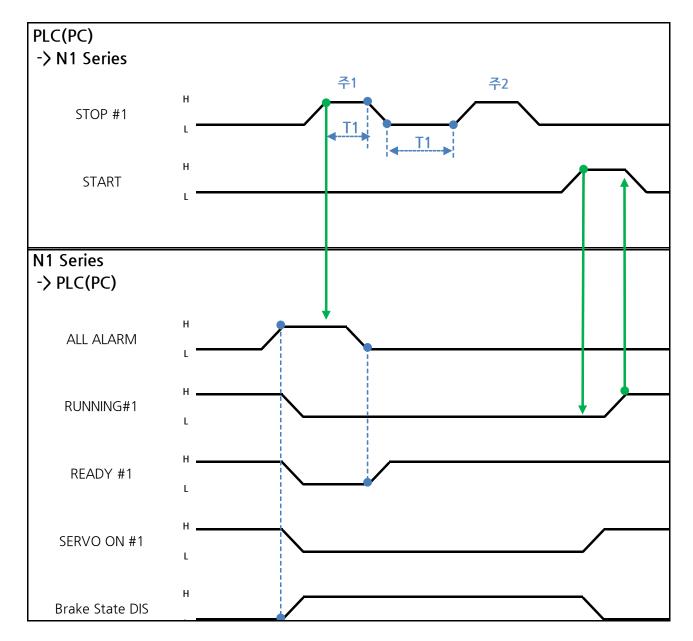
Auto Servo ON 인 경우

설명 :

- RUNNING#1 Bit가 Low상태인지 확인합니다.
- STOP #1 Signal를 Pulse로 입력 합니다. (High 상태를 20ms 이상 유지 해야 합니다.)
- PROG 0~4 Bit를 조합하여 원하는 JOB Program num를 입력합니다.(PROG0 Bit가 최하위(LSB) Bit이며 PROG4 Bit가 최상위(MSB) Bit 입니다.)
- JOB Program num 설정이 완료되면 PROG SEL Bit를 High로 설정 합니다.
- N1 Controller에서 출력하는 PROGRAM NUM 확인 후 START #1을 High로 설정 합니다.
- 주1) JOB Program에서 EOP로 JOB이 종료가 되면 RUNNING#1 Bit는 Low 상태로 변경 됩니다.

Auto Servo ON이 아닐 경우

설명 :


- STOP #1 Signal대신 SERVO ON#1 Signal를 Pulse로 입력 합니다. (High 상태를 20ms 이상 유기 해야 합니다.)
- PROG 0~4 Bit를 조합하여 원하는 JOB Program num를 입력합니다.(PROG0 Bit가 최하위(LSB) Bit이며 PROG4 Bit가 최상위(MSB) Bit 입니다.)
- JOB Program num 설정이 완료되면 PROG SEL Bit를 High로 설정 합니다.
- N1 Controller에서 출력하는 PROGRAM NUM 확인 후 SERVO ON #1 Signal를 Pulse로 입력합니다.

(High 상태를 20ms 이상 유지 해야 합니다.)

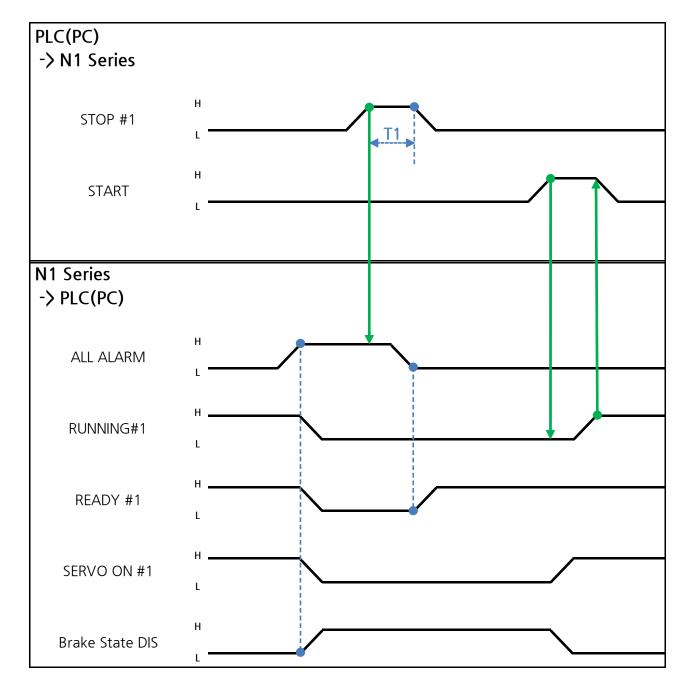
● START #1을 High로 설정 합니다

6.3.4 알람 해제 후 JOB Program START

Auto Servo ON 인 경우

설명 :

- STOP #1 Signal를 Pulse로 2회 입력 합니다. (High 상태를 20ms 이상 유지 해야 합니다.)
- START #1을 High로 설정 합니다
- 주1) 알람 해제를 위한 Signal 입니다.
- 주2) JOB Program STEP Line을 처음으로 설정 합니다.


Auto Servo ON이 아닐 경우

설명 :

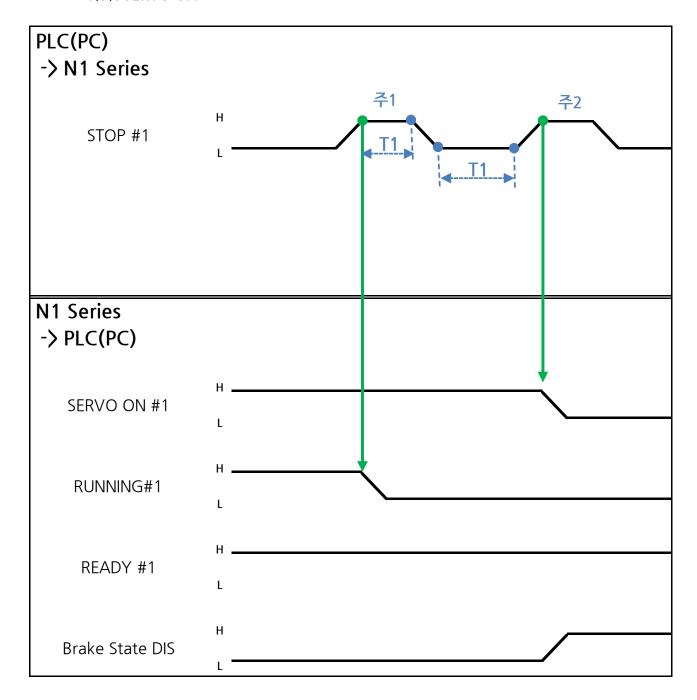
- STOP #1 Signal를 2회 Pulse로 입력 합니다.(High 상태를 20ms 이상 유지 해야 합니다.)
- START #1을 High로 설정 합니다

6.3.5 알람 해제 후 JOB Program Restart

Auto Servo ON 인 경우

설명 :

- STOP #1 Signal를 Pulse로 입력 합니다. (High 상태를 20ms 이상 유지 해야 합니다.)
- START #1을 High로 설정 합니다


Auto Servo ON이 아닐 경우

설명 :

- STOP #1 Signal를 Pulse로 입력 합니다. (High 상태를 20ms 이상 유지 해야 합니다.)
- SERVO ON #1 Signal를 Pulse로 입력 합니다. (High 상태를 20ms 이상 유지 해야 합니다.)
- SERVO ON 확인 후 START #1을 High로 설정 합니다

6.3.6 SERVO OFF

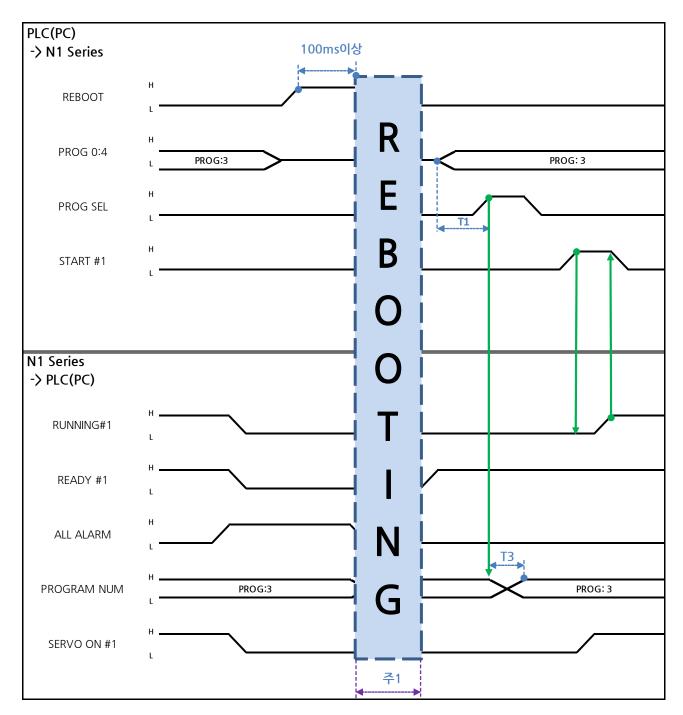
Auto Servo ON 인 경우

설명 :

- STOP #1 Signal를 Pulse로 입력 합니다. (High 상태를 20ms 이상 유지 해야 합니다.)
- 주1) JOB Program 운전을 정지하기 위한 Signal 입니다.
- 주2) SERVO OFF를 하기 위한 Signal 입니다.

Auto Servo ON이 아닐 경우

설명 :

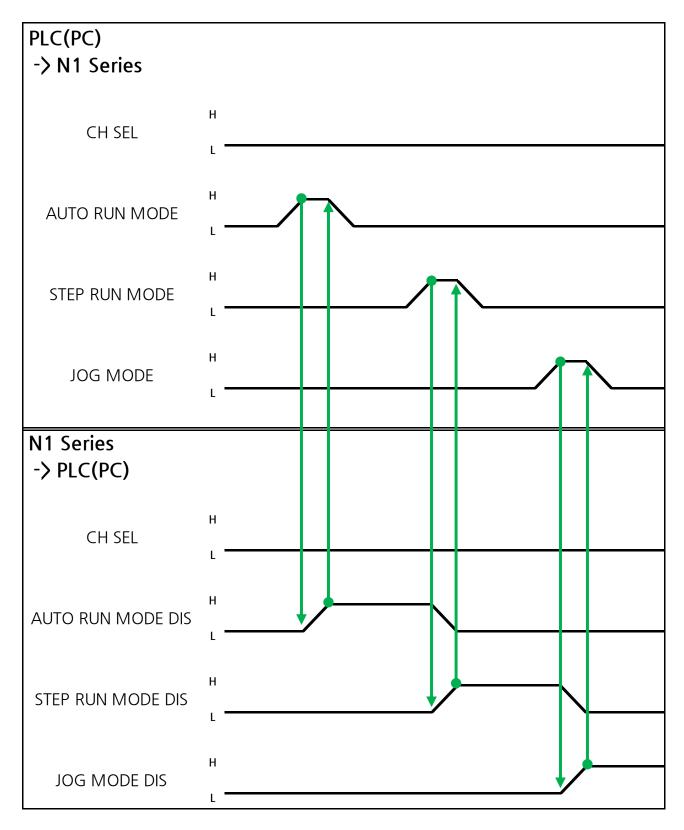

- STOP #1 Signal를 Pulse로 입력 합니다. (High 상태를 20ms 이상 유지 해야 합니다.)
- 두 번째 STOP #1 Signal 되신 SERVO ON #1 Signal를 Pulse로 입력 합니다. (High 상태를 20ms 이상 유지 해야 합니다.)

- ▶ Auto Servo ON이 아닌 경우에는 두 번째 STOP #1 Signal 출력하여도 Servo OFF가 적용되지 않습니다.
- ▶ Servo OFF가 되려면 SERVO ON #1 Signal를 Pulse로 출력하면 Servo OFF가 됩니다

6.3.7 Rebooting

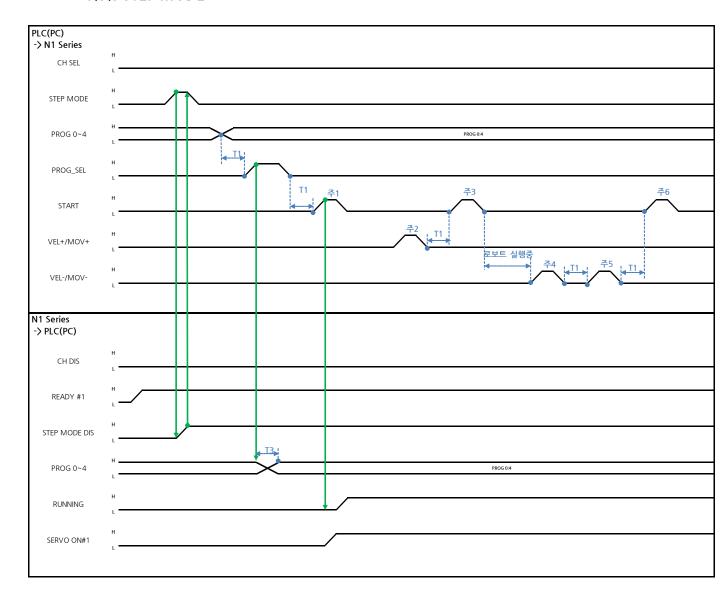
설명 :

- REBOOT Bit를 High로 설정 합니다. High 상태를 100ms 이상 유지하여야 Rebooting이 됩니다. 100ms 이하로 유지할 경우 Rebooting 수행 하지 않을 수 있습니다.
- Rebooting이 완료되더라도 알람 조건이 해제가 안된 경우 ALARM Bit는 High 상태를 유지 합니다. 이 경우 알람 조건을 전부 해제 후 다시 Rebooting을 시도 합니다.


- Rebooting이 완료가 되면 READY #1 Signal이 High 상태로 변경 됩니다. 이때에 JOB Program num를 설정 합니다.
- N1 Controller에서 출력하는 PROGRAM NUM 확인 후 START #1 Bit를 High로 설정 합니다.

- ▶ 주1) Rebooting할 때 Signal들은 오동작 할 수 있으니 주의 하십시오.
- ▶ Rebooting 완료 후 타이밍도는 "6.3.2 AUTO RUN MODE 운전"과 동일합니다

6.3.8 MODE(AUTO, STEP, JOG) 변경


설명 :

- CH SEL Bit를 이용하여 원하는 Channel를 선택합니다.(Low: Channel 1번, High: Channel 2번)
- 원하는 운전 MODE(AUTO RUN, STEP RUN, JOG)를 선택 합니다.
 MODE Signal은 Pulse 형태로 입력합니다. 이때에 High 상태를 20ms 이상 유지 하여야 합니다.

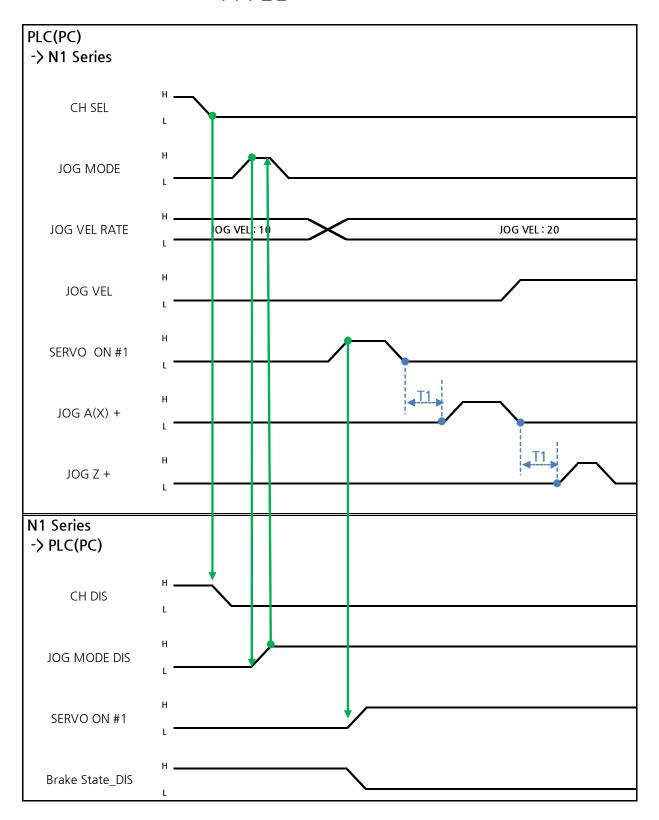
- ▶ MODE 전환은 SERVO OFF 상태에서만 가능 합니다
- ▶ MODE 전환은 CH SEL Bit를 확인 후 MODE 전환을 합니다.
- ▶ CH SEL Bit 설정이 잘못 되어 있을 경우 다른 Channel MODE가 변경 됩니다.

6.3.9 **STEP MODE**

Auto Servo ON 인 경우

설명

- System Input #2의 STEP MODE Bit를 Pulse로 입력 합니다.(High 상태를 20ms이상 유지하여 야 합니다.)
- STEP MODE가 설정되면, STEP MODE DIS가 High로 설정 됩니다.
- PROG 0~4 Bit를 조합하여 원하는 JOB Program num를 설정 합니다.(PROGO Bit가 최하위(LSB)
 Bit이며 PROG4 Bit가 최상위(MSB) Bit 입니다.)
- JOB Program num 설정이 끝나면 PROG SEL Bit를 High로 설정 합니다.
- N1 Controller에서 출력하는 PROGRAM NUM 확인 합니다.
- System Input #1의 START Bit를 이용하여 JOB을 구동 합니다.
- System Input #1의 VEL+/ VEL- Bit를 이용하여 원하는 JOB 스텝을 선택 합니다.
- 동작을 원하는 STEP 선택 후, START#1 Bit를 Pulse로 입력 합니다.
- START Bit를 이용하여 실행 시 한 STEP씩 증가 하면서 동작 합니다.
- 원하는 동작만을 보고 싶을 때는 VEL+/VEL- Bit를 이용하여 원하는 동작 STEP Line에 맟추고 START #1 Bit를 이용하여 실행 합니다
- 주1) JOB Program START를 의미 합니다. (현재 Step Line: 1)
- 주2) JOB program Step를 +1 합니다. (현재 Step Line: 2)
- 주3) 현재 Step Line을 실행합니다. 그리고 Step을 +1 합니다. (Step Line: 3)
- 주4) 현재 Step을 -1합니다. (Step Line: 2)
- 주5) 현재 Step을 -1합니다. (Step Line: 1)
- 주6) 현재 Step Line을 실행합니다. 그리고 Step을 +1 합니다. (Step Line: 2)

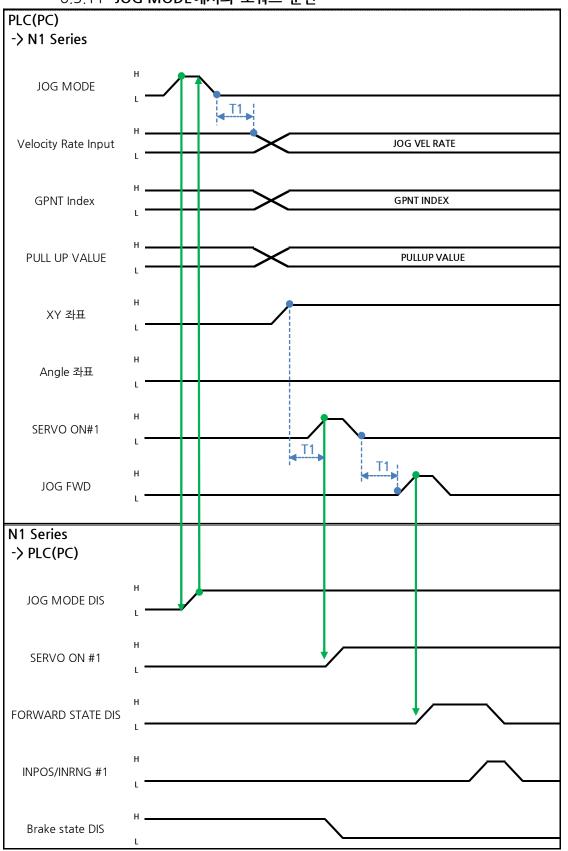

Auto Servo ON이 아닐 경우

설명 :

- System Input #2의 STEP MODE Bit를 Pulse로 입력합니다.(High 상태를 20ms이상 유지하여야 합니다.)
- STEP MODE가 설정되면, STEP MODE DIS가 High로 변경 됩니다.
- PROG 0~4 Bit를 조합하여 원하는 JOB Program num를 설정 합니다.(PROG0 Bit가 최하위(LSB) Bit이며 PROG4 Bit가 최상위(MSB) Bit 입니다.)
- JOB Program num 설정이 끝나면 PROG SEL Bit를 High로 변경 합니다.
- N1 Controller에서 출력하는 PROGRAM NUM 확인 합니다.
- SERVO ON#1 Bit를 Pulse로 입력 합니다. N1 Series의 System output #1의 SERVO ON#1을 확인하여 SERVO ON이 상태인지 확인 합니다.
- System Input #1의 START Bit를 이용하여 JOB을 구동 합니다.
- System Input #1의 VEL+/ VEL- Bit를 이용하여 원하는 JOB 스텝을 선택합니다.
- 동작을 원하는 STEP을 선택 후 START#1 Bit를 Pulse로 입력 합니다.
- START Bit를 이용하여 실행 시 한 STEP씩 증가 하면서 동작 합니다.

6.3.10 JOG MODE에서의 운전

설명

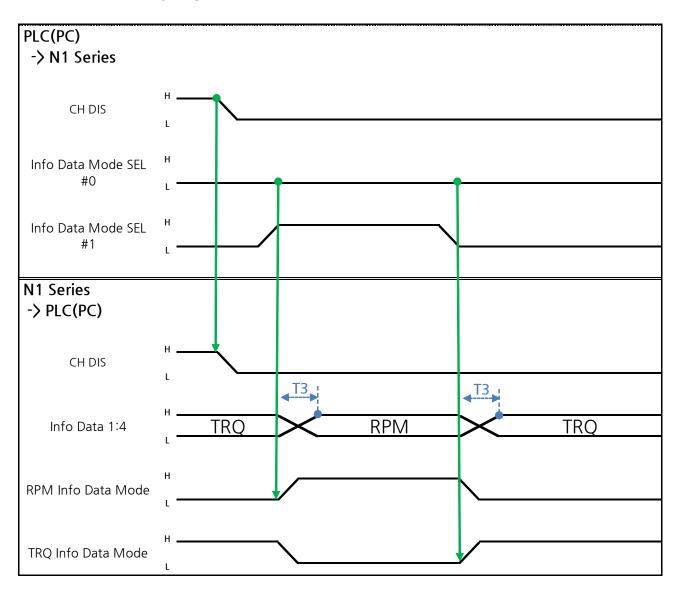

- FIELDBUS INPUT #2의 JOG MODE Bit를 Pulse로 입력 합니다.
- JOG MODE가 설정 되면, JOG MODE DIS가 High로 설정 됩니다.
- JOG MODE DIS을 이용하여 현재 선택된 MODE에 대해서 알 수 있으며 AUTO MODE 또는 STEP MODE을 선택 하기 전까지 상태를 유지 합니다.
- JOG 운전시 이동 속도를 설정 합니다. 입력 범위는 (0~100%)
- FIELDBUS INPUT #2의 JOG X(A)+ ~ JOG W-중 선택적으로 설정 합니다..
- JOG VEL Bit를 Low로 설정 시 JOG VEL RATE 설정 값의 ½ 속도로 동작 합니다.

⚠

- ▶ Velocity Rate Input이 0인 경우 1% 속도로 동작 합니다.
- ▶ JOG MODE SET BIT의 경우 PULSE 입력을 해야 합니다.
- ▶ JOG 운전시 Auto Servo ON 설정에 상관없이 Auto Servo ON이 적용되지 않습니다.
- ▶ JOG 운전시 반드시 SERVO ON #1 Signal를 출력하여 Servo ON 상태로 변경하시기 바랍니다.
- ▶ 좌표 선택을 하지 않는 경우 Angle좌표로 동작 합니다.

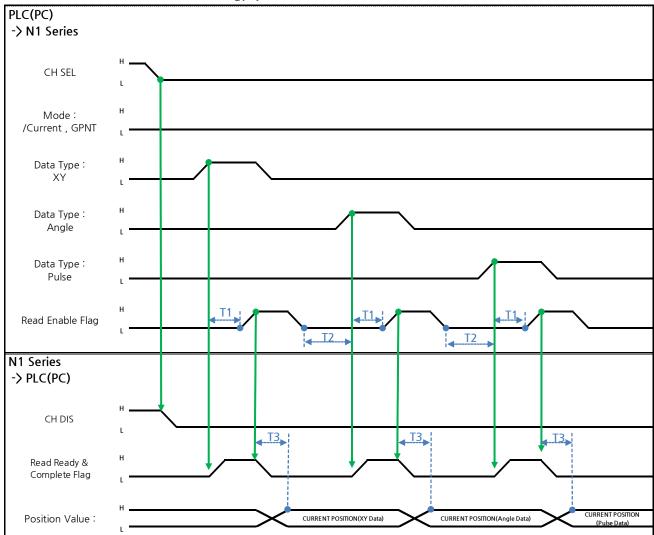
6.3.11 **JOG MODE에서의 포워드 운전**

설명


- JOG MODE DIS 상태 Bit를 사용하여 현재 선택된 MODE을 알 수 있으며, AUTO MODE 또는 STEP MODE을 선택 하기 전까지 상태를 유지 합니다.
- JOG FWD 운전시 적용 할 속도를 설정 합니다. 입력 범위는 (0~100%, 초기값: 1%)
- FWD 운전시 적용 할 PULL UP 값을 설정 합니다.
- FIELDBUS INPUT #2의 JOG FWD Bit를 Pulse로 입력 합니다.
- Forward 동작 시 Forward State DIS 비트는 High가 되며 동작 완료 시 Low로 변경 됩니다.

- ▶ Velocity Rate Input이 0인 경우 1% 속도로 동작합니다.
- ▶ JOG MODE SET BIT의 경우 PULSE 입력을 해야 합니다.
- ▶ JOG 운전시 Auto Servo ON 설정에 상관없이 Auto Servo ON이 적용되지 않습니다.
- ▶ JOG 운전시 반드시 SERVO ON #1 Signal를 출력하여 Servo ON 상태로 변경 하시기 바랍니다.
- ► Scara Robot Type에서 Angle좌표 선택시 JMOV 동작하며, XY좌표 선택시 LMOV로 동작합니다.

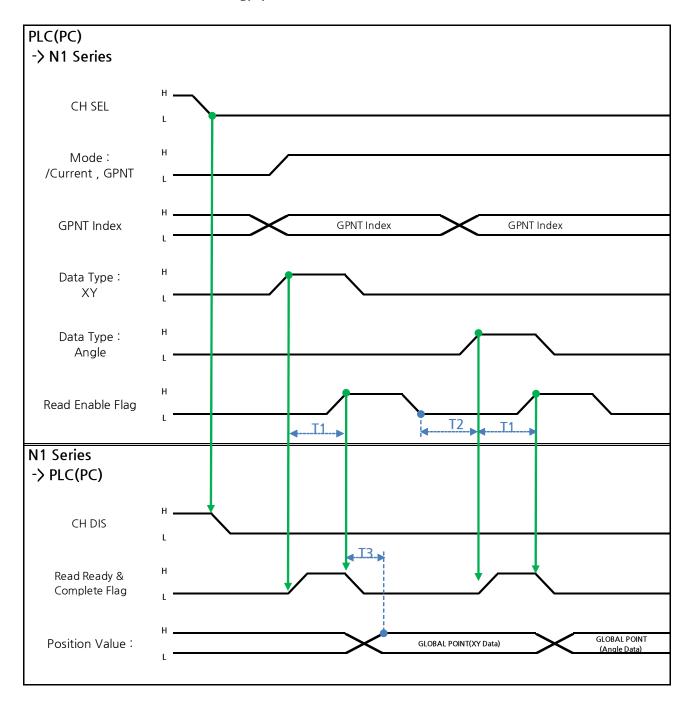
6.3.12 RPM, TRQ 읽기


설명

- Info Data Mode 0:1 설정에 따라 TRQ 또는 RPM 값을 출력 합니다.
- 현재 출력 값에 대한 정보는 TRQ Info Data Mode Bit와 RPM Info Data Mode Bit로 확인이 가능 합니다.

	TRQ	RPM
Info Data Mode SEL #0	LOW	LOW
Info Data Mode SEL #1	LOW	HIGH

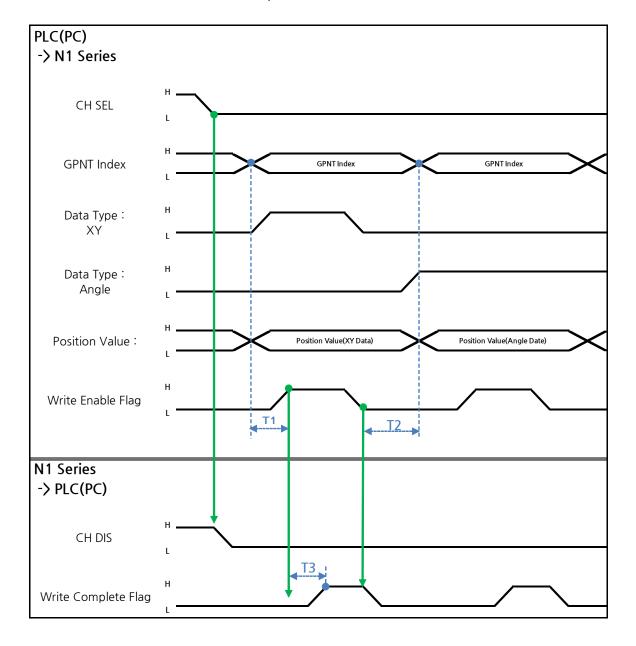
설명


- CH SEL Bit를 설정 합니다. (Low: Channel 1번, High: Channel 2번)
- Current Position를 읽기 위한 Data Type(XYZW, ABZW)를 설정합니다.
- 현재위치를 읽기 위해서는 Mode Select bit를 Low상태로 설정 합니다. (Low: 로봇 현재 좌표읽기, High: Global Point 읽기)
- System OUT2의 Read Ready & Complete Flag Bit를 사용하여 읽기 가능 유/무 판단을 할 수 있습니다.
- Read Enable Flag 비트를 사용하여 현재 위치 값을 읽어 올 수 있습니다.
- Data Type 변경에 따른 현재 위치 Read시 최소 대기 시간(T2:30ms)이 필요합니다.

- ▶ Read Enable Flag High시 Data Type이 Low로 변하지 않으면 Read Ready & Complete Flag 가 순간적으로 다시 High가 됩니다.
- ▶ Data Type 변경에 따른 Current Position Read시 최소 대기 시간이 필요 합니다.

6.3.14 GLOBAL Point 읽기

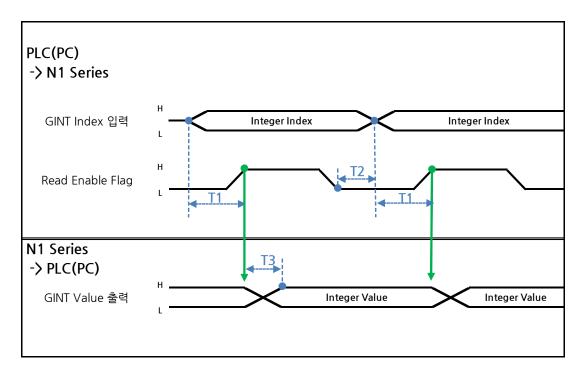
설명 :


- CH SEL Bit를 설정 합니다.(Low: Channel 1번, High: Channel 2번)
- Mode Select bit를 High상태로 설정 합니다.(Low: 로봇 현재 좌표읽기, High: Global Point 읽기)
- GPNT Index를 설정 합니다.
- T1(20ms)만큼 지연시간 후 Read Enable Flag Bit를 High로 설정 합니다. 이때 Read Ready&Complete Flag 상태는 High상태여야 합니다.
- Data Type 선택에 따라 Global Point에 저장 된 값을 XY좌표 값 또는 Angle값으로 읽을 수 있습니다.
- Field Bus Input #1의 Read Enable Flag Bit를 High로 설정하면 N1 Series의 GLOBAL Point값이 설정됩니다.
- 연속적인 Global Point Read 발생 시 T2(30ms)만큼 지연시간이 필요합니다.

- ▶ Read Enable Flag Signal High상태에서 Data Type 이 Low로 변경되지 않으면, Read Ready & Complete Flag가 순간적으로 다시 High가 됩니다.
- ▶ 연속적인 Global Point Read시 최소 대기 시간이 필요 합니다.

6.3.15 GLOBAL Point 쓰기

설명


- CH SEL Bit를 설정 합니다.(Low: Channel 1번, High: Channel 2번)
- Global Point Index와 Data Type(XYZW, ABZW)을 설정 합니다.
- 저장할 각 축의 위치 데이터를 설정 합니다.
- GPNT Index 와 Data Type을 설정이 완료 되면, Field Bus Input #1의 Write Enable Flag Bit를 High로 설정 합니다.
- N1 Series에서 저장이 완료되면, Write Complete Flag가 High로 변경 됩니다.
- Write Enable Flag Bit를 Low로 설정하면 Write Complete Flag 역시 Low로 변경 됩니다.
- 연속적인 Global Point 를 저장할 경우 T2(30ms) 만큼 지연시간이 필요 합니다.

- ▶ Data Type은 XY좌표와 Angle좌표만 가능합니다.
- ▶ GINT, GFLOAT 및 GPOINT는 Read Enable Flag를 공통으로 사용하기 때문에 변경을 원치 않는 시점에는 사용 하지 않는 변수의 Index 값을 할당 합니다.
- ▶ 연속적인 GPOINT Write시 최소 대기 시간이 필요 합니다.

6.3.16 GLOBAL Integer 읽기

설명 :

- 읽기 원하는 Global Integer의 Index을 설정 합니다.
- Index 설정 후 Field bus Input#1의 Read Enable Flag Bit를 High로 설정 합니다.
- N1 Series에서 출력되는 Global Integer의 값을 확인 합니다.
- Global Integer의 값을 연속적인 Global Integer 읽기 수행 시 T2(30ms)만큼 지연시간이 필요합니다.



CAUTION

▶ GLOBAL Integer, GLOBAL Float, GLOBAL Point는 Read Enable Flag를 공통으로 사용하기 때문에 변경을 원치 않는 시점에는 사용 하지 않는 변수의 Index값 설정에 주의해야 합니다.

6.3.17 GLOBAL Integer 쓰기

설명 :

- 쓰기 원하는 Global Integer Index와 Global Integer값을 설정 합니다.
- Write Enable Flag를 High로 설정 합니다.
- N1 Series에서 저장이 완료되면 Write complete Flag가 Low에서 High상태로 변경 됩니다.
- Write Enable Flag를 Low상태로 설정하면 Write Complete Flag Bit는 Low상태로 변경 됩니다.
- 연속적으로 Global Integer값을 저장 할 경우 T2(30ms)만큼 지연시간이 필요 합니다.

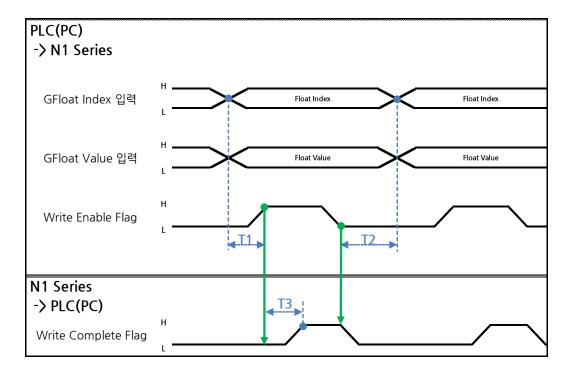
CAUTION

▶ GLOBAL Integer, GLOBAL Float, GLOBAL Point는 Write Enable Flag를 공통으로 사용하기 때문에 변경을 원치 않는 시점에는 사용하지 않는 변수의 Index값 설정에 주의해야 합니다.

6.3.18 GLOBAL Float 읽기

설명

- 읽기 원하는 Global Float의 Index을 설정 합니다.
- Index 설정 후 Field bus Input#1의 Read Enable Flag Bit를 High로 설정 합니다.
- N1 Series에서 출력되는 Global Flot의 값을 확인 합니다.
- Global Float의 값을 연속적인 Global Float 읽기 수행 시 T2(30ms)만큼 지연시간이 필요합니다.



CAUTION

▶ GLOBAL Integer, GLOBAL Float, GLOBAL Point는 Write Enable Flag를 공통으로 사용하기 때문에 변경을 원치 않는 시점에는 사용하지 않는 변수의 Index값 설정에 주의해야 합니다.

6.3.19 GLOBAL Float 쓰기

설명 :

- 쓰기 원하는 Global Float Index와 Global Float 값을 설정 합니다.
- Write Enable Flag를 High로 설정 합니다.
- N1 Series에서 저장이 완료되면 Write complete Flag가 Low에서 High상태로 변경 됩니다.
- Write Enable Flag를 Low상태로 설정하면 Write Complete Flag Bit는 Low상태로 변경 됩니다.
- 연속적으로 Global Float값을 저장 할 경우 T2(30ms)만큼 지연시간이 필요 합니다.

. •

⚠

CAUTION

▶ GLOBAL Integer, GLOBAL Float, GLOBAL Point는 Write Enable Flag를 공통으로 사용하기 때문에 변경을 원치 않는 시점에는 사용하지 않는 변수의 Index값 설정에 주의해야 합니다.

제7장 부 록

7.1 용어 정리

1. PLC

프로그래머블 로직 컨트롤러(Programmable Logic Controller)을 뜻합니다.

2. 마스터국

제어정보(파라미터)를 갖고 네트워크 전체를 관리하는 국, 하나의 네트워크에 1 대 필요 국번은 고정 합니다.

3. 슬레이브국

마스터국 이외 국의 총칭 입니다.

4. 리모트국

리모트 I/O 국 , 리모트 디바이스국의 총칭 입니다.

5. 인텔레전트 디바이스국

마스터국과 1:n의 사이클릭 전송 및 트랜젠트 전송이 가능한 국을 뜻합니다.

6. 리모트 디바이스국

비트 데이터 및 워드 데이터를 사용할 수 있는 국을 뜻합니다. (예: 아날로그 유닛, 지시계, 디지털 유닛, 전자밸브 등)

7. 리모트 I/O 국

비트 데이터만 사용할 수 있는 국을 뜻합니다. 1 국 점유만 가능 합니다. (유닛, 전자밸브, 센서등)

8. 로컬국

마스터국 및 다른 로컬국과 n:n의 사이클릭 전송 및 트랜젠트 전송이 가능한 국을 뜻합니다.

9. 국수

CC-Link 에 접속된 모든 슬레이브국의 점유 국수의 합계입니다.

10. 국번

CC-Link 상의 마스터국 O 및 슬레이브국에 할당되는 1 부터 64 까지의 수. 슬레이브국은 점유국 수도 고려하여 중복하지 않도록 할당할 필요가 있습니다.

7-1

11. 점유국 수

1 대의 슬레이브국이 사용하는 네트워크상의 국수. 데이터 수에 따라 1 국부터 4 국까지 설정가 능합니다.

12. 대기 마스터국

마스터국의 기능이 정지한 경우, 마스터국을 대행하여 데이터 링크를 속행시키는 국입니다. 마스터국과 동일한 기능을 갖고 있으며, 평상시는 로컬국으로 사용 합니다.

13, RX · RY

리모트 입력 (RX), 리모트 출력(RY).

사이클릭 전송에 의해, 각국에 전송되는 비트 데이터. 또는 이 정보를 격납하는 에리어(area)를 편의상 RX · RY 로 나타냅니다. 마스터국에서 입력 데이터를 RX, 출력 데이터를 RY로 합니다.

14. RWr · RWw

리모트 레지스터(register).

사이클릭 전송에 의해, 각국에 전송되는 워드 데이터. 또는 이 정보를 격납하는 에리어(area)를 편의상 RWr · RWw 로 나타냅니다. 마스터국에서 입력 데이터를 RWr, 출력 데이터를 RWw 로 합니다.

Rev.	수정일자	내용	수정자	S/W Version
V.1	2012,10,30	초판 인쇄		

N1 ROBOT CONTROLLER

CONTROLLER MANUAL

FIRST EDITION OCTOBER 2012 ROBOSTAR CO, LTD ROBOT R&D CENTER